DÉVELOPPEMENT

Théorème de Riezs-Fischer

Nathan Fournié

Références : Daniel Li, Cours d'analyse fonctionnelle, ellipse (2eme ed.), p.10

THÉORÈME: RIESZ-FISCHER

Soit (E, Ω, m) un espace mesuré munit d'une mesure positive m. Pour tout $p \ge 1$, l'espace $L^p(m)$ est un espace de Banach.

Démonstration

Commençons par le cas où $\mathfrak{p}=\infty$ et rappelons que dans ce cas :

$$\|f\|_{\infty} = \inf\{\alpha > 0 , m(\{|f| > \alpha\}) = 0\}.$$

Considérons une suite de fonctions (f_n) de $L^\infty(m)$ qui soit de Cauchy. Pour tout $k\in\mathbb{N}$, il existe un $n_k\in\mathbb{N}$ tel que pour tout $r,q>n_k$ on ait :

$$\|\mathbf{f}_{r} - \mathbf{f}_{q}\|_{\infty} \leqslant \frac{1}{k}.$$

On peut interpréter ça sur les images des f_n à un ensemble de mesure nulle N près 1 : Pour tout $k\in\mathbb{N}$, il existe un $n_k\in\mathbb{N}$ tel que pour tout $r,q>n_k$ on ait, pour tout $x\in\Omega\setminus N$:

$$|f_r(x) - f_q(x)| \leqslant \frac{1}{k}.$$
 (1)

Alors, la suite de points de \mathbb{K} $f_n(x)$ est de Cauchy, or comme $\mathbb{K} \in \{\mathbb{R},\mathbb{C}\}$ est complet, on sait qu'elle converge. Posons f(x) sa limite. On veut montrer d'une part que $f \in L^\infty(m)$ et d'autre par que (f_n) converge vers f. D'après 1, en faisant tendre q vers ∞ on trouve que :

$$|f_r(x) - f(x)| \leqslant \frac{1}{k}.$$

Donc:

$$|f(x)|\leqslant \frac{1}{k}+|f_r(x)|\leqslant \frac{1}{k}+\left\|f_r\right\|_{\infty}.$$

Ce qui montre bien que f est dans $L^{\infty}(m)^2$. Enfin, on a pour tout $n > n_k$:

$$\|f_{n} - f\|_{\infty} \leqslant \frac{1}{k}$$

puisque, pour tout $f \in L^{\infty}(m)$ on a : $\|f\|_{\infty} \leq \sup_{x \in E} |f(x)|$. Ce qui termine le cas $p = \infty$ en montrant la convergence de (f_n) au sens de la norme $\|.\|_{\infty}$.

Regardons à présent le cas où $p\in [1,\infty[$ et considérons de nouveaux (f_n) une suite de Cauchy dans $L^p(m).$ On peut alors trouver une sous-suite de (f_n) vérifiant pour tout $k\in\mathbb{N}$:

$$\left\|f_{n_{k+1}}-f_{n_k}\right\|_{\mathfrak{p}}\leqslant \frac{1}{2^k}.$$

Posons à présent les fonctions mesurables³ :

$$g_k = \sum_{i=1}^k |f_{n_{i+1}} - f_{n_i}| \quad \text{et} \quad g = \sum_{i=1}^\infty |f_{n_{i+1}} - f_{n_i}|$$

Puis, en appliquant l'inégalité triangulaire on trouve que $\|g_k\|_p \leqslant \sum_{i=1}^k \frac{1}{2^i} = 1$. Ce qui nous permet, grâce au lemme de Fatou de montrer que la fonction g^p est intégrable contre m puisque :

$$\int_{E} g^{p} dm \leqslant \liminf_{k \to \infty} \int_{E} g_{k}^{p} dm = \liminf_{k \to \infty} \|g_{k}\|_{p}^{p} \leqslant 1.$$

Ceci montre que la fonction g^p est finie m.p.p donc g aussi. La série numérique $\sum_{k\geqslant 1}f_{n_{k+1}}(x)-f_{n_k}(x)$ converge alors absolument presque partout. Par complétude de $\mathbb R$, cette série converge simplement.

C'est donc aussi vraie pour la série $f_{n_1}(x)+\sum_{k\geqslant 1}f_{n_{k+1}}(x)-f_{n_k}(x)$. Notons alors f(x) la somme de cette série quand elle converge et posons f(x)=0 sinon. Enfin, en remarquant que :

$$f_{n_1}(x) + \sum_{k \ge 1}^{k-1} f_{n_{k+1}}(x) - f_{n_k}(x) = f_{n_k}(x)$$

on voit que la suite $(f_{n_k}(x))$ converge presque partout vers la fonction f(x). Pour terminer, il faut montrer que f est bien la limite de (f_n) dans $L^p(m)$. La suite est de Cauchy, donc pour $\epsilon>0$ on trouve un entier n>0 tel qu'il existe deux entiers $q,r\geqslant n$ tels que :

$$\left\| f_{q} - f_{r} \right\|_{\mathfrak{p}} \leqslant \varepsilon$$

En appliquant le Lemme de Fatou on trouve :

$$\int_{E}|f-f_{r}|^{p}dm\leqslant \liminf_{q\to\infty}\int_{E}|f_{\mathfrak{n}_{q}}-f_{r}|^{p}dm\leqslant \epsilon^{p}.$$

Donc, $(f-f_r)$ est bien dans $L^p(m)$, donc f aussi et on a : $\lim_{k\to\infty}\|f-f_k\|_p=0$ ce qui termine la preuve.

Dernière compilation le 27 août 2025.

^{1.} En réalité il existe pour chaque k un ensemble négligeable tel qu'on ait le résultat, et N n'est que la réunion dénombrable de tout ces ensembles, donc aussi de mesure nulle.

^{2.} Pour tout f on a toujours $|f| \leq ||f||_{\infty}$.

^{3.} Car somme finie de fonctions mesurable et limite de suite de fonctions mesurables.